Welcome!

Log Management Authors: Dana Gardner, Pat Romanski, Elizabeth White, David H Deans, Carmen Gonzalez

Related Topics: @CloudExpo

@CloudExpo: Blog Feed Post

Infrastructure 2.0 + Cloud + IT as a Service = An Architectural Parfait

The introduction of the newest member of the cloud computing buzzword family is “IT as a Service"

Infrastructure 2.0 ≠ cloud computing ≠ IT as a Service. There is a difference between Infrastructure 2.0 and cloud. There is also a difference between cloud and IT as a Service. But they do go together, like a parfait. And everybody likes a parfait…

image The introduction of the newest member of the cloud computing buzzword family is “IT as a Service.” It is understandably causing some confusion because, after all, isn’t that just another way to describe “private cloud”?  No, actually it isn’t. There’s a lot more to it than that, and it’s very applicable to both private and public models. Furthermore, equating “cloud computing” to “IT as a Service” does both a big a disservice as making synonyms of “Infrastructure 2.0” and “cloud computing.” These three [ concepts | models | technologies ] are highly intertwined and in some cases even interdependent, but they are not the same.

In the simplest explanation possible: infrastructure 2.0 enables cloud computing which enables IT as a service.

Now that we’ve got that out of the way, let’s dig in.

ENABLE DOES NOT MEAN EQUAL TO

One of the core issues seems to be the rush to equate “enable” with “equal”. There is a relationship between these three technological concepts but they are in no wise equivalent nor should be they be treated as such. Like SOA, the differences between them revolve primarily around the level of abstraction and the layers at which they operate. Not the layers of the OSI model or the technology stack, but the layers of a data center architecture.

Let’s start at the bottom, shall we?

INFRASTRUCTURE 2.0

At the very lowest layer of the architecture is Infrastructure 2.0. Infrastructure 2.0 is focused on enabling dynamism and collaboration across the network and application delivery network infrastructure. It is the way in which traditionally disconnected (from a communication and management point of view) data center foundational components are imbued with the ability to connect and collaborate. This is primarily accomplished via open, standards-based APIs that provide a granular set of operational functions that can be invoked from a variety of programmatic methods such as orchestration systems, custom applications, and via integration with traditional data center management solutions. Infrastructure 2.0 is about making the network smarter both from a management and a run-time (execution) point of view, but in the case of its relationship to cloud and IT as a Service the view is primarily focused on imagemanagement.

Infrastructure 2.0 includes the service-enablement of everything from routers to switches, from load balancers to application acceleration, from firewalls to web application security components to server (physical and virtual) infrastructure. It is, distilled to its core essence, API-enabled components.

CLOUD COMPUTING

Cloud computing is the closest to SOA in that it is about enabling operational services in much the same way as SOA was about enabling business services. Cloud computing takes the infrastructure layer services and orchestrates them together to codify an operational process that provides a more efficient means by which compute, network, storage, and security resources can be provisioned and managed. This, like Infrastructure 2.0, is an enabling technology. Alone, these operational services are generally discrete and are packaged up specifically as the means to an end – on-demand provisioning of IT services.

Cloud computing is the service-enablement of operational services and also carries along the notion of an API. In the case of cloud computing, this API serves as a framework through which specific operations can be accomplished in a push-button like manner.

IT as a SERVICE

At the top of our technology pyramid, as it is likely obvious at this point we are building up to the “pinnacle” of IT by laying more aggressively focused layers atop one another, we have IT as a Service. IT as a Service, unlike cloud computing, is designed not only to be consumed by other IT-minded folks, but also by (allegedly) business folks. IT as a Service broadens the provisioning and management of resources and begins to include not only operational services but those services that are more, well, businessy, such as identity management and access to resources.

IT as a Service builds on the services provided by cloud computing, which is often called a “cloud framework” or a “cloud API” and provides the means by which resources can be provisioned and managed. Now that sounds an awful lot like “cloud computing” but the abstraction is a bit higher than what we expect with cloud. Even in a cloud computing API we are steal interacting more directly with operational and compute-type resources. We’re provisioning, primarily, infrastructure services but we are doing so at a much higher layer and in a way that makes it easy for both business and application developers and analysts to do so.

An example is probably in order at this point.

THE THREE LAYERS in the ARCHITECTURAL PARFAIT

image

 

 

 

Let us imagine a simple “application” which itself requires only one server and which must be available at all times.

That’s the “service” IT is going to provide to the business.

In order to accomplish this seemingly simple task, there’s a lot that actually has to go on under the hood, within the bowels of IT.

LAYER ONE

Consider, if you will, what fulfilling that request means. You need at least two servers and a Load balancer, you need a server and some storage, and you need – albeit unknown to the business user – firewall rules to ensure the application is only accessible to those whom you designate. So at the bottom layer of the stack (Infrastructure 2.0) you need a set of components that match these functions and they must be all be enabled with an API (or at a minimum by able to be automated via traditional scripting methods). Now the actual task of configuring a load balancer is not just a single API call. Ask RackSpace, or GoGrid, or Terremark, or any other cloud provider. It takes multiple steps to authenticate and configure – in the right order – that component. The same is true of many components at the infrastructure layer: the APIs are necessarily granular enough to provide the flexibility necessary to be combined in a way as to be customizable for each unique environment in which they may be deployed. So what you end up with is a set of infrastructure services that comprise the appropriate API calls for each component based on the specific operational policies in place.

LAYER TWO

At the next layer up you’re providing even more abstract frameworks. The “cloud API” at this layer may provide services such as “auto-scaling” that require a great deal of configuration and registration of components with other components. There’s automation and orchestration occurring at this layer of the IT Service Stack, as it were, that is much more complex but narrowly focused than at the previous infrastructure layer. It is at this layer that the services become more customized and able to provide business and customer specific options. It is also at this layer where things become more operationally focused, with the provisioning of “application resources” comprising perhaps the provisioning of both compute and storage resources. This layer also lays the foundation for metering and monitoring (cause you want to provide visibility, right?) which essentially overlays, i.e. makes a service of, multiple infrastructure resource monitoring services.

LAYER THREE

At the top layer is IT as a Service, and this is where systems become very abstracted and get turned into the IT King “A La Carte” Menu that is the ultimate goal according to everyone who’s anyone (and a few people who aren’t). This layer offers an interface to the cloud in such a way as to make self-service possible. It may not be Infrabook or even very pretty, but as long as it gets the job done cosmetics are just enhancing the value of what exists in the first place. IT as a Service is the culmination of all the work done at the previous layers to fine-tune services until they are at the point where they are consumable – in the sense that they are easy to understand and require no real technical understanding of what’s actually going on. After all, a business user or application developer doesn’t really need to know how the server and storage resources are provisioned, just in what sizes and how much it’s going to cost.

IT as a Service ultimately enables the end-user – whomever that may be – to easily “order” IT services to fulfill the application specific requirements associated with an application deployment. That means availability, scalability, security, monitoring, and performance.

A DYNAMIC DATA CENTER ARCHITECTURE

One of the first questions that should come to mind is: why does it matter? After all, one could cut out the “cloud computing” layer and go straight from infrastructure services to IT as a Service. While that’s technically true it eliminates one of the biggest benefits of a layered and highly abstracted architecture : agility. By presenting each layer to the layer above as services, we are effectively employing the principles of a service-oriented architecture and separating the implementation from the interface. This provides the ability to modify the implementation without impacting the interface, which means less down-time and very little – if any – modification in layers above the layer being modified. This translates into, at the lowest level, vender agnosticism and the ability to avoid vendor-lock in. If two components, say a Juniper switch and a Cisco switch, are enabled with the means by which they can be enabled as services, then it becomes possible to switch the two at the implementation layer without requiring the changes to trickle upward through the interface and into the higher layers of the architecture.

It’s polymorphism applied to an data center operation rather than a single object’s operations, to put it in developer’s terms. It’s SOA applied to a data center rather than an application, to put it in an architect’s terms.

It’s an architectural parfait and, as we all know, everybody loves a parfait, right?


Related blogs & articles:

Follow me on Twitter View Lori's profile on SlideShare friendfeed icon_facebook

AddThis Feed Button Bookmark and Share

 

 

Read the original blog entry...

More Stories By Lori MacVittie

Lori MacVittie is responsible for education and evangelism of application services available across F5’s entire product suite. Her role includes authorship of technical materials and participation in a number of community-based forums and industry standards organizations, among other efforts. MacVittie has extensive programming experience as an application architect, as well as network and systems development and administration expertise. Prior to joining F5, MacVittie was an award-winning Senior Technology Editor at Network Computing Magazine, where she conducted product research and evaluation focused on integration with application and network architectures, and authored articles on a variety of topics aimed at IT professionals. Her most recent area of focus included SOA-related products and architectures. She holds a B.S. in Information and Computing Science from the University of Wisconsin at Green Bay, and an M.S. in Computer Science from Nova Southeastern University.

IoT & Smart Cities Stories
Dynatrace is an application performance management software company with products for the information technology departments and digital business owners of medium and large businesses. Building the Future of Monitoring with Artificial Intelligence. Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more busine...
Nicolas Fierro is CEO of MIMIR Blockchain Solutions. He is a programmer, technologist, and operations dev who has worked with Ethereum and blockchain since 2014. His knowledge in blockchain dates to when he performed dev ops services to the Ethereum Foundation as one the privileged few developers to work with the original core team in Switzerland.
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settlement products to hedge funds and investment banks. After, he co-founded a revenue cycle management company where he learned about Bitcoin and eventually Ethereal. Andrew's role at ConsenSys Enterprise is a mul...
Whenever a new technology hits the high points of hype, everyone starts talking about it like it will solve all their business problems. Blockchain is one of those technologies. According to Gartner's latest report on the hype cycle of emerging technologies, blockchain has just passed the peak of their hype cycle curve. If you read the news articles about it, one would think it has taken over the technology world. No disruptive technology is without its challenges and potential impediments t...
If a machine can invent, does this mean the end of the patent system as we know it? The patent system, both in the US and Europe, allows companies to protect their inventions and helps foster innovation. However, Artificial Intelligence (AI) could be set to disrupt the patent system as we know it. This talk will examine how AI may change the patent landscape in the years to come. Furthermore, ways in which companies can best protect their AI related inventions will be examined from both a US and...
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
Bill Schmarzo, Tech Chair of "Big Data | Analytics" of upcoming CloudEXPO | DXWorldEXPO New York (November 12-13, 2018, New York City) today announced the outline and schedule of the track. "The track has been designed in experience/degree order," said Schmarzo. "So, that folks who attend the entire track can leave the conference with some of the skills necessary to get their work done when they get back to their offices. It actually ties back to some work that I'm doing at the University of San...
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the...
Bill Schmarzo, author of "Big Data: Understanding How Data Powers Big Business" and "Big Data MBA: Driving Business Strategies with Data Science," is responsible for setting the strategy and defining the Big Data service offerings and capabilities for EMC Global Services Big Data Practice. As the CTO for the Big Data Practice, he is responsible for working with organizations to help them identify where and how to start their big data journeys. He's written several white papers, is an avid blogge...